Linear Time Model Selection for Mixture of Heterogeneous Components
نویسندگان
چکیده
Our main contribution is to propose a novel model selection methodology, expectation minimization of information criterion (EMIC). EMIC makes a significant impact on the combinatorial scalability issue pertaining to the model selection for mixture models having types of components. A goal of such problems is to optimize types of components as well as the number of components. One key idea in EMIC is to iterate calculations of the posterior of latent variables and minimization of expected value of information criterion of both observed data and latent variables. This enables EMIC to compute the optimal model in linear time with respect to both the number of components and the number of available types of components despite the fact that the number of model candidates exponentially increases with the numbers. We prove that EMIC is compliant with some information criteria and enjoys their statistical benefits.
منابع مشابه
Model Selection for Mixture Models Using Perfect Sample
We have considered a perfect sample method for model selection of finite mixture models with either known (fixed) or unknown number of components which can be applied in the most general setting with assumptions on the relation between the rival models and the true distribution. It is, both, one or neither to be well-specified or mis-specified, they may be nested or non-nested. We consider mixt...
متن کاملNovel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection
In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...
متن کاملVehicle Routing with Time Windows and Customer Selection for Perishable Goods
Delivering perishable products to customers as soon as possible and with the minimum cost has been always a challenge for producers and has been emphasized over recent years due to the global market becoming more competitive. In this paper a multi-objective mix integer non-linear programming model is proposed to maximize both profits of a distributer and the total freshness of the several produ...
متن کاملBayesian variable selection for finite mixture model of linear regressions
We propose a Bayesian method for variable selection in the finite mixture model of linear regressions. The model assumes that the observations come from a heterogeneous population which is a mixture of a finite number of sub-populations. Within each sub-population, the response variable can be explained by a linear regression on the predictor variables. So the whole data set can be modeled by a...
متن کاملThe Negative Binomial Distribution Efficiency in Finite Mixture of Semi-parametric Generalized Linear Models
Introduction Selection the appropriate statistical model for the response variable is one of the most important problem in the finite mixture of generalized linear models. One of the distributions which it has a problem in a finite mixture of semi-parametric generalized statistical models, is the Poisson distribution. In this paper, to overcome over dispersion and computational burden, finite ...
متن کامل